Skip to Content

NeMo: Empowering Mothers for Early Detection of Neonatal Illness

2019
Team Members:
  • Anthony Ho
  • Shababa Matin
  • Natalie Ng
  • Madison Vanosdoll
  • Allison Wallingford
  • Ryan Xu
Advisors:
  • Soumyadipta Acharya, MSE, MD, PhD
  • Christopher Golden, MD
  • Alain Labrique, PhD
  • Peter Waiswa, MPH, PhD
  • Moses Kyangwa
  • Azadeh Farzin, MD

Abstract:

Each year, 3.3 million newborns die in the first 28 days following birth, with 75% of these deaths occurring in the first seven days of life. A majority of these deaths occur within homes in low-resource settings, largely due to preventable causes such as pneumonia, sepsis, and other illnesses. Healthcare systems in low-resource settings often rely on volunteer community health workers (CHWs) to visit newborns in rural villages in the first week of life for triage. CHWs triage newborns based on the World Health Organization’s established Integrated Management of Newborn and Childhood Illness (IMNCI) danger signs: difficulty breastfeeding, convulsions, chest indrawing, movement only when stimulated, respiratory rate greater than 60 breaths per minute, temperature higher than 37.5 ˚C, and temperature less than 35.5 ˚C. The number of CHWs, however, remains woefully inadequate and thus infants with signs of illness are often identified too late to impact survival. Although effective identification of these signs at the community level can intercept illness and incite care-seeking behavior capable of impacting child mortality, the tools and training needed to assess quantitative and qualitative indicators of illness are lacking in low-income settings.

Therefore, our team has developed the NeMo system, a two-part neonatal monitoring system designed to empower mothers, regardless of literacy, to effectively identify danger signs in their newborns and guide them to take appropriate and timely action to seek care outside the home. This system is comprised of a low-cost wearable band that measures the newborn’s respiratory rate and temperature and is paired with a smartphone application that guides the mother through the qualitative danger signs. Our team has travelled to Uganda to validate the usability of this system and tailor-fitted the NeMo system to the end user. Currently, the NeMo system is undergoing validation testing in the Johns Hopkins Nursery where data collection enables breath-by-breath analysis to iteratively improve the respiratory rate algorithm’s overall sensitivity and specificity. The team will return to Uganda to perform an acceptability study where mothers will be observed under the intended use case to study barriers of adoptions and behavior change triggered by the NeMo system.

Read the Johns Hopkins University privacy statement here.

Accept